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Abstract
The low-energy structures of the quantum ferrimagnetic Heisenberg chain
consisting of ( 5

2 , 1
2 , 1

2 ) trimers are investigated theoretically. The results of
the linear spin-wave theory are compared with those from the numerical exact
diagonalization calculation and the matrix product method for the lowest optical
mode. The temperature behaviour of thermodynamical properties such as
magnetic susceptibility, specific heat and entropy are analysed in the framework
of the modified spin-wave theory. The results of the calculations are used
to explain the experimental data obtained for the molecule-based heterospin
magnets [Mn(hfac)2BNOR] (R = H, F, Cl, Br) with one-dimensional chain
structure.

1. Introduction

The magnetic properties of molecule-based heterospin magnets have been a subject of renewed
interest in the physics of one-dimensional (1D) magnetic systems. In this respect, the
compounds with a general formula [Mn(hfac)2BNOR] (R = H, F, Cl, Br) are of special
interest. These magnetic systems undergo a three-dimensional (3D) ordering at very low
temperatures (T < TN or TC) but they exhibit essentially 1D behaviour above the 3D
ordering regime [1]. The magnetic properties of the compounds strongly depend on the
chemical formula and spin configuration in space. In these compounds the manganese ions
and diradical 5-R-1, 3-bis(N-tert-butyl-N-oxy-amino)benzene (BNOR) molecules (R = H,
F, Cl, Br) form 1D zigzag polymeric chains. The spins of the NO groups of the diradical
are ordered ferromagnetically with a large value of the energy of the exchange coupling
(figure 1). The exchange interaction between 3d electrons of the divalent Mn ion and 2p
electrons of the NO group is antiferromagnetic. The 1D complexes with R = H and F are
ordered antiferromagnetically below 5.5 and 5.3 K, respectively, due to a negative interchain
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Figure 1. The schematic chain structure of [Mn(hfac)2BNOR] compounds.

interaction, while the compounds with R = Cl, Br show ferrimagnetic order below 4.8 and
5.3 K, respectively. The compounds have three-spin periodicity along the 1D chains.

The three-spin model ( 5
2 , 1

2 , 1
2 ) with two types of exchange parameter suggested for a

description of the system presents a further natural development of the theory of two-spin
(S, s) ferrimagnetic chains [2]. Thus, it is interesting to see how the quantum behaviour of the
model depends on the constituent spins and what features are inherited in such an expansion
of the model. The existence of metal ions with the large spin 5

2 makes a quantum treatment of
the system a non-trivial problem. Though the correlation length of the ( 5

2 , 1
2 , 1

2 ) chain is very
small [2], a numerical investigation of the system is problematic because of the large number
of magnetic cell states. The chosen model of a linear spin chain is a simplified description
of the real compounds with zigzag space structure. A possible exchange interaction between
two NO radicals adjoining one Mn ion and a possible exchange interaction between two Mn
ions are omitted in such considerations. Taking account of the interactions (equivalent to the
two-leg zigzag ladder) may result in a non-collinear spin arrangement.

The main feature of 1D ferrimagnets is a long-range order with simultaneous strongly
developed quantum fluctuations. Nevertheless, the spin-wave approach leads to very
satisfactory results for the ground state, magnetization and low-energy excitations [3, 4].
This represents a difference between ferrimagnets and 1D antiferromagnets, where quantum
fluctuations play an essential role, resulting in destruction of the long-range order, and the
spin-wave theory is not appropriate.

A variational procedure based on the DMRG algorithm has been suggested also for
quantum ferrimagnets [5]. As is shown, application of the approach to the three-spin
ferrimagnet allows one to describe reasonably well the ground state properties from a non-
interacting ( 1

2 , 5
2 , 1

2 ) trimer limit up to a situation where the model becomes equivalent to the
( 5

2 , 1) ferrimagnetic chain model [2].
As has been demonstrated in a number of works, there is a coexistence of ferromagnetic and

antiferromagnetic features in quantum ferrimagnets. In recent studies the following scenario
has been established [6]. At low temperatures the mixed-spin model behaves like a ferromag-
net and at intermediate temperatures as an antiferromagnet. Both types of excitation may be
observed, for example, in the thermal behaviour of the zero-field magnetic susceptibility. In the
theory of two-spin (S, s) ferrimagnetic chains the non-interacting spin-wave approximation is
valid for the lowest gapless mode,but it only captures qualitatively the elementary excitations of
optical magnons. The quantum fluctuations have been taken into account by including a spin-
wave interaction [7]. The calculation of the optical magnon dispersion results in excellent con-
sistency with the numerical Monte Carlo and direct diagonalization results. The modified vari-
ational method has been generalized for calculations for optical magnons of the (1, 1

2 ) chain [8].
The aim of the present work is to study the excitations of the model heterospin ( 5

2 , 1
2 , 1

2 )
ferrimagnetic chain and to apply the results obtained to give an explanation of the magnetic
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properties of the metal–radical complexes with a chain structure. The powder samples of the
above compounds were prepared and examined as described in Inoue et al [9]. The magnetic
susceptibility was measured between 1.8 and 350 K by using a Quantum Design SQUID
magnetometer in the applied field 5000 Oe. The powder samples were placed in a Japanese
pharmacopoeia gel capsule. The background data for the capsule were measured separately
and subtracted from the sample-in-cell data.

The paper is organized in the following way. In section 2 the linear spin-wave treatment
is developed. In section 3 the lower optical magnon branch of excitations is calculated
by the matrix product method (MPM). The SW results for the quadratic gapless mode are
compared with the values obtained in the real-space quantum renormalization group and exact
diagonalization methods.

In section 4 the zero-field magnetic susceptibility, the specific heat and the entropy are
found in the framework of the modified spin-wave theory. The agreement with the experimental
data for the [Mn(hfac)2BNOR] (R = H, Cl, Br) compounds is discussed.

2. Spin-wave calculation

We consider the model of the 1D spin chain ( 5
2 , 1

2 , 1
2 ) described by the Hamiltonian

Ĥ = Ja

∑
n

�S1n · �S2n + J f

∑
n

�S2n · �S3n +
Ja

2

(∑
n

�S3n · �S1n+1 +
∑

n

�S3n−1 · �S1n

)
, (1)

where �S1n , �S2n and �S3n are respectively the spin- 5
2 , spin- 1

2 and spin- 1
2 operators of the nth

elementary magnetic cell. The sum n runs over the N sites of the chain. Due to the translational
invariance, the last two terms in equation (1) coincide. Only the exchange interaction between
nearest neighbours is considered and all bonds between 5

2 and 1
2 spins (Ja > 0) are taken as

antiferromagnetic while those between 1
2 and 1

2 spins (J f < 0) are taken as ferromagnetic.
In the limit of strong ferromagnetic exchange interaction (|J f | > Ja) one can consider a spin
chain ( 5

2 , 1) instead of the spin chain ( 5
2 , 1

2 , 1
2 ) with the Hamiltonian

H = J
∑

n

�Sn · �sn + J
∑

n

�sn · �Sn+1 (S = 5/2, s = 1), (2)

where J corresponds to the antiferromagnetic exchange coupling J = Ja/2.
Firstly, we obtain the spin-wave theory results giving a qualitative view of the low-energy

structure. By supposing a Néel state with a magnetization (3/2)N the bosonic operators for
the spin deviation in each sublattice are defined as

Sz
1n = S1 − a+

1na1n, S+
1n = √

2S1a1n, S−
1n = a+

1n

√
2S1

Sz
in = −Si + a+

inain, S+
in = a+

in

√
2Si , S−

in = √
2Si ain (i = 2, 3).

(3)

To obtain the dispersion relations of the spin-wave excitations, the boson Hamiltonian is treated
up to quadratic order. On using the momentum representation of the bosonic operators:

a1n = 1√
N

∑
k

eik(n− 1
3 )a1k,

a2n = 1√
N

∑
k

e−ikna2k,

a3n = 1√
N

∑
k

e−ik(n+ 1
3 )a3k

(4)

the initial Hamiltonian takes the form
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H =
∑

k

2Ja S2a+
1ka1k +

∑
k

∑
i=2,3

(Ja S1 − J f S2)a
+
ikaik

+
∑

k

Ja

√
S1S2(e

−i k
3 a1ka2k + ei k

3 a+
1ka+

2k) +
∑

k

J f S2(e
−i k

3 a+
2ka3k + ei k

3 a2ka+
3k)

+
∑

k

Ja

√
S1S2(e

−i k
3 a+

3ka+
1k + ei k

3 a3ka1k) − 2N Ja S1 S2 + N J f S2
2 . (5)

Carrying out a Bogoliubov transformation:
a1k = u11(k)α1k + u12(k)α+

2k + u13(k)α+
3k,

a2k = u21(k)α+
1k + u22(k)α2k + u23(k)α3k,

a3k = u31(k)α+
1k + u32(k)α2k + u33(k)α3k

(6)

the diagonal Hamiltonian

H = E0 −
∑

k

E1kα
†
1kα1k +

∑
k

E2kα
†
2kα2k +

∑
k

E3kα
†
3kα3k (7)

is reached, where E0 is a zero-frequency energy. The coefficients of the transformation
may be found through equations of motion for the Green functions G(1) = 〈〈a1k |a+

1k〉〉,
G(2) = 〈〈a+

2k |a+
1k〉〉 and G(3) = 〈〈a+

3k |a+
1k〉〉:( E − A −C∗

k −Ck

Ck E + B D∗
k

C∗
k Dk E + B

)[ G(1)

G(2)

G(3)

]
=

[ 1
0
0

]
, (8)

where A = 2Ja S2, B = Ja S1 − J f S2, Ck = Ja
√

S1S2 exp(−ik/3), Dk = J f S2 exp(−ik/3).
The Bogoliubov transformation coefficients are given by

u11(k) =
[

�1k(−E1k)

(E1k − E2k)(E1k − E3k)

] 1
2

,

u12(k) =
[

�1k(−E2k)

(E1k − E2k)(E2k − E3k)

] 1
2

,

u13(k) =
[

�1k(−E3k)

(E1k − E3k)(E3k − E2k)

] 1
2

,

u21(k) = �2k(−E1k)

[�1k(−E1k)(E1k − E2k)(E1k − E3k)]
1
2

,

u22(k) = �2k(−E2k)

[�1k(−E2k)(E1k − E2k)(E2k − E3k)]
1
2

,

u23(k) = �2k(−E3k)

[�1k(−E3k)(E1k − E3k)(E3k − E2k)]
1
2

,

u31(k) = �3k(−E1k)

[�1k(−E1k)(E1k − E2k)(E1k − E3k)]
1
2

,

u32(k) = �3k(−E2k)

[�1k(−E2k)(E1k − E2k)(E2k − E3k)]
1
2

,

u33(k) = �3k(−E3k)

[�1k(−E3k)(E1k − E3k)(E3k − E2k)]
1
2

,

where

�k(E) = (E + E1k)(E + E2k)(E + E3k),

�1k(E) = (E + B)(E + B) − D∗
k Dk,

�2k(E) = �∗
3k(E) = −(E + B)Ck + C∗

k D∗
k .
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Figure 2. Spin-wave theory dispersion curves for the linear ferrimagnetic ( 5
2 , 1

2 , 1
2 ) chain.

The energies of the elementary excitations

Eik = −2

√
− p

3
cos

(
α

3
+ (i − 1)

2π

3

)
+

a

3
(i = 1, 2, 3) (9)

where α = cos−1(−q/2
√−(p/3)3), p = −a2/3 + b, q = 2(a/3)3 − ab/3 + c with

a = 2(Ja(S1 − S2) − J f S2), b = Ja(S1 − 2S2)(Ja S1 − 2J f S2),

c = 4J 2
a J f S1S2

2 sin2

(
k

2

)
.

The calculation yields a gapless excitation from the ferrimagnetic ground state with the
total magnetization M = ∑n

i=1(Sz
1i + Sz

2i + Sz
3i ) = (3/2)N − 1; the lowest optical mode

corresponds to the total magnetization M = (3/2)N + 1, and the second branch does to
M = (3/2)N + 2 (figure 2).

3. Matrix product method

The linear spin-wave theory gives a qualitative description of the excitation spectrum.
Quantitative calculation—for example, of the optical magnon branches—is of special interest
due to possible magnetization plateaux appearing in the 1D system [10, 11]. A quantitative
spin-wave theory must take into account spin-wave interaction to show good consistency with
numerical calculations [7]. A different scheme which has proven to be very successful for the
quantum ferrimagnet is the variational MPM [5]. A calculation of an optical magnon spectrum
by this method has been carried out by Kolezhuk et al [8], where a trial wavefunction for the
optical magnon with the momentum k under periodic boundary conditions is constructed as

|k〉 =
∑

n

eikn |n〉, |n〉 = Tr{g1 . . . gn−1g̃ngn+1 . . . gL}.

The elementary matrices gi and g̃i are formed from the block states |SMS〉. The energy
dependences of the block states on the ratio J f /Ja are presented in figure 3. In the previous
investigation of ground state properties we retained the two lowest states | 3

2 M〉 and | 5
2 M〉 which

allows us to use a g-matrix of size 2 × 2. The inclusion of the next upper states | 7
2 M〉 requires

an expansion of the g-matrix size up to the dimension 3 × 3. The ground state energy per site
found by the MPM with the g-matrix of size 2 × 2 is − 5.805J and it is − 5.914J for the
size 3 × 3. In the latter case the g-matrix contains five independent variational parameters and
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Figure 3. Energy levels of the block states. The three lowest states are taken into consideration in
the matrix product approach.

the contribution of the states | 7
2 M〉 turns out to be not small. (The corresponding variational

coefficient η = C27/2
3/2 /C03/2

3/2 ≈ 0.72, where the notation of [5] is used.)

In the low-energy excitation study one can include the | 7
2 M〉 states in a g-matrix of size

2 × 2. In view of this, one may count on a sufficient quantitative accuracy of the approach
presented below.

The ground state has two Affleck–Kennedy–Lieb–Tasaki (AKLT) singlet bonds [12],since
a low-lying excitation may be considered qualitatively as the forming of one triplet bond in the
AKLT valence-bond-solid state and g̃ should carry the ‘hyperspin’ quantum numbers ( 5

2 , 5
2 ):

g
5
2

5
2 = g̃ =




(u1 −
√

5
7 u3)| 5

2
5
2 〉 −

√
3

14 u4| 7
2

5
2 〉

√
3
2 u4| 7

2
7
2 〉

− {√
2u2| 3

2
3
2 〉 − 2√

7
u3| 5

2
3
2 〉

− 1√
14

u4| 7
2

3
2 〉} (u1 +

√
5
7 u3)| 5

2
5
2 〉 +

√
3

14 u4| 7
2

5
2


 , (10)

while each g carries ground state quantum numbers ( 3
2 , 3

2 ):

ĝ
3
2

3
2 =

(
(u −

√
3
5v)| 3

2
3
2 〉 − 2√

15
ω| 5

2
3
2 〉 2√

3
ω| 5

2
5
2 〉

− 2√
5
v| 3

2
1
2 〉 −

√
2

15ω| 5
2

1
2 〉 (u +

√
3
5v)| 3

2
3
2 〉 + 2√

15
ω| 5

2
3
2 〉

)
. (11)

In Kolezhuk et al [8] the set of one-magnon states |n〉has been taken as mutually orthogonal
by special choice of the variational parameters. In our calculation we used the conventional
method operating with the non-orthogonal basis, when the states |n〉 are not orthogonal to each
other, but are orthogonal just to the ground state. The details of the technique may be found
in [13].

According to the method, one needs to calculate: the norm of the states |k〉; the expectation
value 〈k|ĤB|k〉 of the block Hamiltonian

ĤB =
∑

n

Ja �S1n · �S2n + J f �S2n · �S3n, (12)

including the intrablock interactions; and the expectation value 〈k|ĤB B|k〉 of the interblock
interactions

ĤB B = Ja

∑
n

�S3n · �S1n+1. (13)

As a result, one obtain the energy functional in the form

E = L Egr + ω(k),

with the energy of the ground state

Egr = lim
L→∞

〈k|H (1)
B |k〉 + 〈k|H (1)

B B|k〉
〈k|k〉 ,
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Figure 4. Dispersion relations for the ferromagnetic and lower antiferromagnetic elementary
excitations. The non-interacting and interacting spin-wave calculations are shown by solid and
dotted curves respectively, whereas © represents the matrix product and � the exact diagonalization
results (up to N = 7). The ground state energy is supposed to be zero.

and the excitation energy

ω(k) = lim
L→∞

〈k|H (0)
B |k〉 + 〈k|H (0)

B B|k〉
〈k|k〉 . (14)

The upper index (1) denotes the terms in the expectation values which are proportional to L
and (0) those which are proportional to 1. Minimization of the ground state energy Egr gives
the coefficients u, v, w. The excitation spectrum is obtained by minimizing the excitation
energy ω(k) for each k with the u, v, w found and the result is presented in figure 4, where
strong ferromagnetic coupling is assumed. This provides a satisfactory agreement with the
spin-wave calculation for the two-spin (S, s) ferrimagnetic model with account taken of the
spin-wave interaction ω̃±

k = ω±
k ± δω±

k [7], where

ω±
k = ωk ± (S − s), ωk =

√
(S − s)2 + 4Ss sin2 k,

δω±
k = 2(S + s)�1

sin2 k

ωk
+

�2√
Ss

ω±
k ,

�1 = 1

2N

∑
k

(
S + s

ωk
− 1

)
, �2 = − 1

N

∑
k

√
Ss

ωk
cos2 k,

(15)

and one has to use S = 5/2, s = 1. Since, in its turn, an account of the spin-wave interaction
gives a good agreement with the numerical Monte Carlo and exact diagonalization calculations,
one may suggest that the variational procedure developed describes both the ground state
properties and the antiferromagnetic branch of elementary excitations well, quantitatively.

To control our g-matrix choice, one needs to calculate the value of the full spin chain
magnetization Sz = (1/L)

∑
i S

z
1i + Sz

2i + Sz
3i in the Bloch state:

〈Sz〉 = lim
L→∞

〈k|Sz |k〉
〈k|k〉 . (16)

For the antiferromagnet branch this may be evaluated for the set of variational parameters
found. It turns out to be (3/2)L + 1 in full accordance with the qualitative reasoning presented
above.

The small-momentum ferromagnetic excitations must dominate the low-temperature
thermodynamics. Previously, the quantum ferrimagnetic chain has been considered by the
quantum renormalization method in real space [2] and as a result of this effective description
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the gapless ferromagnetic mode can be obtained by using the dispersion relation of the
S = 3/2 Heisenberg ferromagnet with renormalized exchange coupling J̃ = −(14/25)J .
The curvature for quadratic dispersion 2 J̃ S(1 − cos k) is v ≈ 0.84J . For comparison, the
spin-wave theory of the 1D quantum (S, s) ferrimagnetic chain yields to the following result:
v = (Ss/[2(S − s)])J ≈ 0.83J .

One can diagonalize the Hamiltonian (2) of the finite (S, s) chain with periodic boundary
conditions using the Lanczos algorithm [14, 15]. The exact diagonalization results are reliable
for the system under consideration because of the small correlation length, comparable with the
lattice unit. To obtain the acoustic and lower optical branches we calculate the ferromagnetic
and antiferromagnetic dynamic structure factors [16]:

S−+(k, ω) =
∑

n

|〈n|S−
k + s−

k |0〉|2δ(ω − (En − E0)),

S+−(k, ω) =
∑

n

|〈n|S+
k + s+

k |0〉|2δ(ω − (En − E0)),

respectively, where |n〉 denotes an eigenstate of the Hamiltonian with the energy En and E0

is ground state energy with spin (S − s)N . Since the total magnetization M = ∑
j Sz

j + sz
j is

a conserved quantity, one can diagonalize the Hamiltonian (2) in each subspace with a given
M . The dynamic structure factor is expressed through the Green function

Sσ σ̄ (k, ω) = − 1

π
Im Gσ σ̄ (k, ω),

where σ = ±1 and σ̄ = −σ , which is determined as a continued fraction:

Gσ σ̄ (k, ω) = 〈0|(Sσ̄
−k + s σ̄

−k)(s
σ
k + Sσ

k )|0〉
ω − a0 − b2

1/ω − a1 − b2
2

ω−a2−···
,

where the coefficients an = 〈 fn|H | fn〉/〈 fn | fn〉, b2
n = 〈 fn| fn〉/〈 fn−1| fn−1〉, b0 = 0 are

determined by a set of orthogonal states

| fn+1〉 = H | fn〉 − an| fn〉 − b2
n| fn−1〉, | f0〉 = (sσ

k + Sσ
k )|0〉.

The initial state is taken as the lowest energy state with M = N(S − s) and the
Fourier transforms of the spin operators defined as S±

k = N−1/2 ∑
j eik( j−1/4)S±

j , s±
k =

N−1/2 ∑
j eik( j+1/4)s±

j . The exact diagonalization results are presented in figure 4 up to the
chain length N = 7. They show good consistency with the spin-wave theory calculation even
for the small chain length. The ground state energy per site is E0/N ≈ −5.916J , obtained
for N = 7.

4. Magnetic susceptibility and heat capacity

The thermodynamical properties can be conveniently considered in terms of the modified spin-
wave theory with an additional constraint on the magnetization [17]. The low-temperature
thermodynamics will determined by the dispersion relation of the gapless ferromagnetic
branch, whereas the gapped antiferromagnetic modes will be displayed at intermediate
temperatures. The occupation numbers of three branches of spin excitations:

ñ1k = {exp[(−E1k − µ(−|u11(k)|2 + |u12(k)|2 + |u13(k)|2))/(kB T )] − 1}−1, (17)

ñik = {exp[(Eik − µ(−|ui1(k)|2 + |ui2(k)|2 + |ui3(k)|2))/(kB T )] − 1}−1 (i = 2, 3)

depend on the chemical potential µ. According to modified spin-wave theory [18] it controls
the boson numbers if one imposes the requirement that the full magnetization of the cell must
be zero [19]:
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1

N

〈∑
i

Sz
1i + Sz

2i + Sz
3i

〉
= (S1 − 2S2) + (−n1 + n2 + n3) = 0, (18)

where

ni = 1

N

∑
k

〈a+
ikaik〉 = 1

N

∑
k

nik (i = 1, 2, 3). (19)

The constraint introduced above is appropriate at high temperatures, since at low temperatures
the system considered is unstable against 3D arrangement.

The susceptibility χ = [1/(3T )]
∑

m〈(Sz
0 − 〈Sz〉)(Sz

m − 〈Sz〉)〉 may be written as

χ = 1

3T

∑
m

[−(S1 − 2S2)
2 + 〈a+

0 a0a+
mam〉 − 〈a+

0 a0b+
mbm〉 − 〈a+

0 a0c+
mcm〉 − 〈b+

0 b0a+
mam〉

+ 〈b+
0 b0b+

mbm〉 + 〈b+
0 b0c+

mcm〉 − 〈c+
0 c0a+

mam〉 + 〈c+
0 c0b+

mbm〉 + 〈c+
0 c0c+

mcm〉], (20)

where the correlation functions involved in equation (20) are calculated through Wick’s
theorem:

〈a+
i0ai0a+

imaim〉 = 2n2
i + ni (i = 1, 2, 3),

〈a+
30a30a+

2ma2m〉 = n3n2 +

(
1

N

∑
k

〈a+
3ka2k〉

)(
1

N

∑
ḱ

〈a3ḱ a+
2ḱ

〉
)

,

〈a+
20a20a+

3ma3m〉 = n2n3 +

(
1

N

∑
k

〈a+
2ka3k〉

)(
1

N

∑
ḱ

〈a2ḱ a+
3ḱ

〉
)

,

〈a+
10a10a+

jma jm〉 = n1n j ( j = 2, 3),

where

n1k = |u11(k)|2 ñ1k + |u12(k)|2(1 + ñ2k) + |u13(k)|2(1 + ñ3k),

nik = |ui1(k)|2(1 + ñ1k) + |ui2(k)|2ñ2k + |ui3(k)|2 ñ3k, (i = 2, 3)

〈a+
2ka3k〉 = u∗

21(k)u31(k)(1 + ñ1k) + u∗
22(k)u32(k)ñ2k + u∗

23(k)u33(k)ñ3k,

〈a2ka+
3k〉 = u21(k)u∗

31(k)ñ1k + u22(k)u∗
32(k)(1 + ñ2k) + u32(k)u∗

33(k)(1 + ñ3k).

(21)

An example of the model calculation fitting (NA(gµ0)
2/kB)χ to the experimental data is

shown in figure 5 for a different relationship of the exchange parameters. The experimental
data for the compounds [Mn(hfac)2BNOR] with different ions R = H, Cl, Br differ weakly
from each other above the 3D transition temperature. The spin-wave calculation captures
qualitatively the temperature behaviour of the magnetic susceptibility. It has been demonstrated
previously in the investigation of the elementary excitation spectrum in two-spin ferrimagnetic
chains that numerical quantum Monte Carlo estimates result in a more rapid decrease of the
magnetic susceptibility with temperature increase. One has to use a more precise value for
the gyromagnetic ratio, which is taken as 2, for simplicity. The relationship of the exchange
parameters |J f | > Ja gives a better accordance with the low-temperature data, but gives values
higher than those data at high temperatures. With further increase of the temperature the
antiferromagnetic branch of the elementary excitations is displayed as a steady susceptibility,
increasing from the temperature corresponding to the antiferromagnet gap. One may conclude
that the temperature behaviour of the magnetic susceptibility is insensitive to the relationship of
the exchange parameters. The curves of magnetic susceptibility are the same for the different
sets of Ja and J f at T < 350 K (figure 5). The difference in temperature behaviour becomes
visible above the temperature corresponding to the lowest antiferromagnetic gap. Judging by
the available experimental data, it occurs at temperatures far exceeding temperatures where
the compound is still stable.
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Figure 5. The temperature dependence of the zero-field susceptibility. The open squares are the
experimental data, while the open circles (Ja = 1160 and J f = −2321 K), the triangles (Ja = 696
and J f = −696 K) and the crosses (Ja = 1160 and J f = −23 K) are the results of the modified
spin-wave calculation. In the inset the same results, measured in units of Ja , are shown for a wider
temperature range.

It should be noted that the magnetization measurements of a single-crystalline sample
of [Mn(hfac)2BNOH] in the ordered state (at T < 5.5 K) have revealed the presence of an
anisotropy of the critical transition field that suggests a non-collinear arrangement of magnetic
moments [20]. Such a non-collinear antiferromagnetic structure may be a result of the influence
of the next-nearest-neighbour exchange interaction. Bearing in mind the zigzag form of the
chains in [Mn(hfac)2BNOR], the suggestion looks quite reasonable. It requires an account of
the next-nearest-neighbour exchange in our model that we hope will allow improvement of the
agreement between the experimental data and theory in the low-temperature region. As to the
interchain interaction, it seems to be rather small to bias the magnetic susceptibility well above
the ordering temperature, since the critical field needed to overcome the antiferromagnetic
exchange between chains in [Mn(hfac)2BNOH] is found to be 200–400 Oe at T = 1.8 K [20].

One can suggest that the behaviour of the specific heat and the entropy at low temperatures
will be more informative as regards the |J f |/Ja ratio in the chain. As an example, the specific
heat CV = N ∂ Ē/∂T , Ē = Egr + (1/N)

∑3
α=1

∑
k Ekα ñαk for the chosen set of parameters is

shown in figure 6(a). The decrease of the ferromagnetic exchange parameter up to a regime
of non-interacting trimers is accomplished by a narrowing of the acoustic branch of magnon
excitations that is displayed as a shaping of the Schottky-like peak in CV at low temperatures.
It is seen also as a transition in the entropy (S) behaviour with temperature increase from a
smoothly increasing (Ja � |J f |) to a steplike curve (Ja 
 |J f |) (figure 6(b)). Thus, the
temperature behaviour of the entropy seems to provide a more convenient way of determining
the exchange interaction features in the systems.

Finally, we discuss the possibility of measuring the lowest antiferromagnetic gap
experimentally in strong magnetic fields. From the experimental point of view, magnetization
plateaux may appear in the compounds. According to the Lieb–Schultz–Mattis theorem
extended to systems in a magnetic field, the appearance of a plateau with magnetization
M may occur at Smax(1 − M) ∈ Z, where the Smax is the maximal spin in the unit cell
(Smax = 7/2) and the magnetization M is normalized to saturation values ±1. Thus, one may
expect the magnetization plateaux at M = 3/7 corresponding to the ground state, at M = 5/7
(partially polarized state) and M = 1 (fully polarized state). The lowest antiferromagnetic
gap is determined by the critical magnetic field Hc of the transition from the ground state



Low-energy excitations and thermodynamical properties of the quantum ( 5
2 , 1

2 , 1
2 ) ferrimagnetic chain 8077

0 100 200 300

0,0

0,2

0,4

0,6

0,8

1,0
C

V
/N

k B

T, K
0 50 100 150 200 250 300

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

1,6

1,8

S
/N

k
B

T, K

1

2

3

(a) (b)

Figure 6. The temperature dependence of the specific heat (a) and entropy (b). The exchange
parameters are taken as in figure 5.

magnetization plateau to steady magnetization growth. However, the plateaux might be
smeared by the 3D arrangement at low temperatures. High-field magnetization measurements
(up to 40 T) of the [Mn(hfac)2BNOH] compound performed at T = 1.6 K, i.e. below the
3D ordering temperature, have shown that the saturation magnetization reaches a value of
about 3 µB , which corresponds to the ground ferrimagnetic state [21]. This fact may serve as
additional evidence of the large antiferromagnetic exchange interaction between 3d electrons
of the Mn ions and 2p electrons of the NO groups. The field 40 T is not enough to destroy
antiferromagnetic coupling in the chains. In order to observe the ground state magnetization
plateau above the 3D ordering temperature, one may suggest that higher magnetic fields are
needed.

5. Conclusions

The 1D quantum ( 5
2 , 1

2 , 1
2 ) ferrimagnet model is a promising candidate for describing

thermodynamical properties of the molecule-based heterospin magnet with 1D chain structure
and with the general formula [Mn(hfac)2BNOR]. In the current work the low-energy magnon
spectrum of the model is investigated. The linear spin-wave calculation yields a gapless
acoustic branch with the magnetization (3/2)N − 1 and two optical branches with the
magnetizations (3/2)N + 1 and (3/2)N + 2. The calculation of the lowest magnon branches
is compared with the results from the exact diagonalization method for strong ferromagnetic
exchange between the trimers. The numerical method reveals a rapid convergence even for
short chains and gives an excellent agreement with SW results.

Calculation of the lower antiferromagnetic branch is carried out by the MPM. The very
satisfactory consistency between the matrix product results with the strong trimer ferromagnetic
coupling and the SW theory taking into account spin-wave interactions shows that the first
approach includes such interactions effectively.

Using the modified spin-wave theory, the temperature dependence of the magnetic
susceptibility of the organic compounds [Mn(hfac)2BNOR] (R = H, F, Cl, Br) is investigated. It
has been found that the ratio of the ferromagnetic and antiferromagnetic exchange interactions
in the chain essentially does not influence the change in susceptibility at temperatures up to
350 K. A discrepancy between calculations and the experimental data may be attributed to the
influence of the next-nearest-neighbour exchange interaction.

In view of this, experiments on other thermodynamical properties such as a specific
heat and entropy are encouraged. The theoretical consideration shows that the weakening
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of the ferromagnetic exchange between the trimers is accompanied by a Schottky peak in
the specific heat or a steplike behaviour in the entropy. The possibility of observing the
lower antiferromagnetic gap in a strong magnetic field has been discussed also. The analysis
presented permits us to conclude that, like in the case of the two-spin ferrimagnet, the
model considered exhibits ferromagnetic and antiferromagnet aspects in the thermodynamical
behaviour.
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